...

Y Remarks on Memory (Applies to GPUs and CPUs) §

= |n our dot product kernel, we could have done everything in
global memory, but ...

= Global memory bandwidth is sloooow:
|deal

Reality

G. Zachmann Massively Parallel Algorithms SS May 2014 Fundamental Algos & Introduction to CUDA 95

eeeee

W Coalesced Memory Access g

" One of the most important optimization techniques for massively
parallel algorithm design (on GPUs and — to some degree — CPUs!)

Coalesced memory accesses Uncoalesced memory accesses
) S

Thread 0 Address 128
——
Thread 1 Address 132
—
Thread 2 Address 136

A
Thread 3 Address 140
—
Thread 4 Address 144
S
Thread 5 Address 148
Y
Thread 6 Address 152
Y
Thread 7 Address 156
—Y]
Thread 8 Address 160

G. Zachmann Massively Parallel Algorithms SS May 2014 Fundamental Algos & Introduction to CUDA 96

eeeee

¥ cc
VR

" When does the GPU win over the CPU?

= Arithmetic intensity of an algorithm :=

number of arithmetic operations

amount of transferred bytes

= Sometimes also called computational intensity

= Unfortunately, many (most?) algorithms have a low arithmetic

intensity — they are bandwidth limited

GPU wins if memory access
is "streamed" = coalesced

= Hence, "stream programming
architecture"

G. Zachmann Massively Parallel Algorithms SS

50

Gbytes/sec
N w B
o o o

—_
o

Cache Seq Rand Cache Seq Rand
GeForce 7800 GTX Pentium 4

May 2014 Fundamental Algos & Introduction to CUDA 97

]

=

Y

How to Achieve Coalesced Access

= Addresses from a warp (“thread-vector”) are converted into
memory line requests

= Line sizes: 32B (= 32x char) and 128B (= 32x float)

= Goal is to maximally utilize the bytes in these lines

addresses from a warp are within cache line

32 64 160 1924 224 256 288 320 352 384
Memory addresses

G. Zachmann Massively Parallel Algorithms SS May 2014 Fundamental Algos & Introduction to CUDA

7‘,'.. cG
VR "

98

D

Bremen

W 2D Array Access Pattern (row major)

= Consider the following code piece in a kernel (e.g., matrix x vector):

for (int j = 0; jJ < 32; jJ ++) {
float x = A[treadIdx.x][]j];
do something with it ...

Element Offsets
float A[N][32];

Althreadldx x][0]=...;
Althreadldx.x][1]=...;

1 thread per row
RN RN
0 32 64 06 128 160 192 224 256 288 320 352 384 416

»Uncoalesced access pattern:

= Elements read on 15t SIMT access: 0, 32, 64, ...
= Elements read on 2" SIMT access: 1, 33, 65, ...

= Also, extra data will be transferred in order to fill the cache line size

= Generally, most natural access pattern for direct port of a C/C++ code!

G. Zachmann Massively Parallel Algorithms SS May 2014 Fundamental Algos & Introduction to CUDA 99

eeeeee

Y Transposed 2D Array Access Pattern

= This "natural" way to store matrices is called row major order

= Column major := store a logical row in a physical column

= l.e., Apo — A[O][0] , Ap1 — A[1][O] , Aoz — A[2][O], ...
A10 = A[O][1], A1q = A[T][T], Ar2 = A[2][T], ...
Ao — AlO][2], ...

= Transform the code piece (e.g., rowxcolumn) to column major:

for (int j = 0; j < 32; j ++){
float x = A[]] [treadIdx.x];
. do something with it ...

= Now, we have coalesced accesses:
= Elements read on 15t SIMT access: O, 1, 2, ..., 31

= Elements Element Offsets
eadon 27 Kl OIS EC
SIMT access: [IW[GIEELIEIES TR (1 [N+t |... [31°N+1 |
32 33 63 A[1][threadldx.x]=...; 1 thread per column !_!-
’ PARERY

S
1l
.\ | | [! !/ | | [| | |
G. Zachmann Massively Parallcfy) 32 64 96 128 160 192 224 256 288 320 352 384 416

Bremen

W Array of Structure or Structure of Array?

= An array of structures (A0S) struct Point {

float x; float y; float z;
};
row major accesses: Point PointList[N];

behaves like

PointList[threadIdx.x] .x =

0 32 64 96 128 160 192 224 256 288 320 352 384 416

= A structure of arrays (SoA) struct PointList {

behaves like float x[N];

) float y[N];

column major access: float z[N];
};

PointList.x[threadIldx.x] =

0 32 64 96 128 160 192 224 256 288 320 352 384 416

G. Zachmann Massively Parallel Algorithms SS May 2014 Fundamental Algos & Introduction to CUDA 101

gt

eeeeee

W Simulating Heat Transfer in Solid Bodies

= Assumptions:
= For sake of illustration, our domain is 2D

= Discretize domain — 2D grid
(common approach in simulation)

= A few designated cells are "heat sources"
— cells with constant temperature

= Simulation model (simplistic):

Tn—l—l _|_ Z . 7-113)

(k.NeN(ij)
o Tn+1 (1 L N,u _|_ Iu Z Tl?l (M

N = number of cells in the neighborhood

= |terate this (e.qg., until convergence to steady-state)

G. Zachmann Massively Parallel Algorithms SS May 2014 Fundamental Algos & Introduction to CUDA

102

E-X3)
b

eeeeee

* Do we achieve energy conservation?

= For sake of simplicity, assume (
N(@i,j) = < n
* Energy consumption iff Z 7_”le Z T)
ij ihJ

Plugging (1) into (2) yields

(1—NM)Z ED Y T/?,/;ZT”

w J (k,eN(ij))

V%
=0

= Therefore, u is indeed a free material parameter (= "heat flow speed")

G. Zachmann Massively Parallel Algorithms SS May 2014 Fundamental Algos & Introduction to CUDA 103

e

eeeee

=

cG §
VR

= Example: heat simulation of ICs and cooling elements

e Int Exe
FPAd
Bpred
Dcache

G. Zachmann Massively Parallel Algorithms SS May 2014 Fundamental Algos & Introduction to CUDA 104

eeeeee

= Observations:

= Each cell's next state can be computed completely independently

» We can arrange our computations like this:

 ——) m—
A A
O S Al 5)
= >_(D < = >_(D < =
2 s) [E]) [E
K~ S B S L
- -
g = g = g
3 S 3 Py 3 . :
R >'g. . ~ >_g.) |~ _ 1., 3., ... iteration
- 3
— ~

&

q weans

= General parallel programming pattern:

Vv weans

double buffering ("ping pong")

2., 4., ... iteration

G. Zachmann Massively Parallel Algorithms SS May 2014 Fundamental Algos & Introduction to CUDA 105

eeeee

Algorithm

" One thread per cell

1. Kernel for resetting heat sources:

if (cell is heat cell):
read temperature from constant "heating stencil"

2. Kernel for one transfer step:

Read all neighbor cells: input grid[tid.x+-1][tid.y+-1]
Accumulate them

Write new temperature in output grid[tid.x][tid.y]

3. Swap pointers to input & output grid (done on host)

= Challenge: border cells! (very frequent problem in sim. codes)

= Use if-then-else in above kernel?
= Use extra kernel that is run only for border cells?

= Introduce padding around domain? Arrange domain as torus?

G. Zachmann Massively Parallel Algorithms SS May 2014 Fundamental Algos & Introduction to CUDA

g.

106

. CG

]

VR X

Y

Texture Memory — Optional

= Many computations have the following characteristics:

= They iterate a simple function many times

= They work on a 2D/3D grid Gin

= We can run one thread per grid cell

= Each thread only needs to look at neighbor cells

Gout

= Each iteration transforms an input grid into an output grid

" For this kind of algorithms, there is texture memory:

SEGFAULT SEGFAULT
= Special cache with optimization for spatial locality SEGFAULT [ESSREREE

,x__T.LTT y
e e SEGFAULT

= Access to neighbor cells is very fast
= Important: can handle out-of-border accesses SEOPADLT - SEGRACLT
automatically by clamping or wrap-around! |

= For the technical details: see "Cuda by Example",
Nvidia's "CUDA C Programming Guide",

G. Zachmann Massively Parallel Algorithms SS May 2014 Fundamental Algos & Introduction to CUDA 107

Gabriel Zachmann
Optional

= The locality-preserving cache is probably achieved by arranging
data via a space-filling curve:

G. Zachmann Massively Parallel Algorithms SS May 2014 Fundamental Algos & Introduction to CUDA

. o
VR X

108

Gabriel Zachmann
Optional

eeeeee

U Other Applications of Texture Memory
Optional
= Most image processing algorithms exhibit this kind of locality

= Trivial example: image addition / subtraction — neighboring
threads access neighboring pixels

Img1+1Img 2

G. Zachmann Massively Parallel Algorithms SS

May 2014

Fundamental Algos & Introduction to CUDA

>
“

109

<N
0

b

Gabriel Zachmann
Optional

eeeeee

Kernel Memory A

® Per-thread
W On-chip

Thread
> - Off-chip, uncached
® Per-block

Block PIEY Shared * On-chip, small
<> ®
pmq Memory Fast

® Per-device

oo RURUGEIR S g

* Persistent across
kernel launches

Kernel 1 2222 « Kernel I/0O

| S c——

cG

Y Ty

G. Zachmann Massively Parallel Algorithms SS May 2014 Fundamental Algos & Introduction to CUDA 111

Bremen

U CUDA Variable Type Qualifiers o

e

Variable declaration Memory Access Lifetime
__device = local int LocalVar; local thread thread
__device = shared int SharedVar; shared block block
__device int GlobalVar; g|oba| gnd application
__device _ constant int ConstantVar; constant grid application

= Remarks:
= device _ isoptional when used with

local , shared , or constant

= Automatic variables without any qualifier reside in a register

- Except arrays, which reside in local memory (slow)

G. Zachmann Massively Parallel Algorithms SS May 2014 Fundamental Algos & Introduction to CUDA 112

Bremen

W CUDA Variable Type Performance

Variable declaration Memory Penalty
int var; register 1x
int array var[10]; local 100x

__shared int shared var; shared 1x
__device int global var; global 100x
__constant int constant var; constant 1x

= Scalar variables reside in fast, on-chip registers

= Shared variables reside in fast, on-chip memories

= Thread-local arrays & global variables reside in uncached off-chip

memory

= Constant variables reside in cached off-chip memory

G. Zachmann Massively Parallel Algorithms SS May 2014 Fundamental Algos & Introduction to CUDA

7. cc

D

VR .~

113

eeeeee

W Where to Declare Variables?

G. Zachmann

Massively Parallel Algorithms SS

May 2014

Fundamental Algos & Introduction to CUDA

8 -
. co :$
VR

4)
Can host access it?
\ J
lobal or yes no register (auto), or
gonstant shared, or
local
4) 4)
Outside .Of In the kernel
any function
\ J \ J

114

eeeee

U Massively Parallel Histogramm Computation

e

= Definition (for images): o
h(x) = # pixels with level x ”
xe0,... L—-1 L = # levels

Number of students

0 20 40 60 80 100

" ApplicationS: many! Scoré achieved in exam
= Huffman compression (see computer science 2" semester)

= Histogram equalization (see Advanced Computer Graphics)

Low contrast image Contrast stretching Histogram equalization

>

w25 led 1025 1.0 §
%20} {0.82.0} 0.8 *E
«; 15} 0.6 1.5} 068
E 1.0} 0.4 1.0} 0.4F
Eo05¢ H0.2 0.5 0.2 c
“ 000756 100150200250-° %%0~50 100150200256"° 8.0 0.2 0.4 0.6 0.8 1.8-0‘8
Pixel intensity Pixel intensity Pixel intensity b

G. Zachmann Massively Parallel Algorithms SS May 2014 Fundamental Algos & Introduction to CUDA 116

eeeee

" The sequential algorithm:

unsigned char input[MAX INP SIZE];// e.g. image

int input size;
unsigned int histogram[256];
// clear histogram

for (int i = 0; 1 < 256; i ++)
histogram[i] = 0;

// # valid chars in input
// here, 256 levels

[for (int i = 0; i < input size; i ++)

histogram[input[i]] ++ ;

// real histogram comput.

]

// verify histogram

long int total count = 0;

for (int 1 = 0; i < 256; i ++)
total count += histogram[i];

if (total count !'= input size)
fprintf (stderr, "Error! ..."

G. Zachmann Massively Parallel Algorithms SS May 2014

) ;

Fundamental Algos & Introduction to CUDA

117

= Naive "massively parallel" algorithm:
= One thread per bin (e.g., 256)

= Each thread scans the complete input and counts the number of
occurrences of its "own" intensity level in the image

= At the end, each thread stores its level count in its histogram slot

= Disadvantage: not so massively parallel ...

G. Zachmann Massively Parallel Algorithms SS May 2014 Fundamental Algos & Introduction to CUDA

. CG

L

-

VR

118

eeeee

= New approach: "one thread per pixel"

" The setup on the host side:

set up device arrays d input, d histogram
cudaMemset(d histogram, 0, 256 * sizeof (int));
int threadsPerBlock = 256;
int nBlocks = #(multiprocessors on device) * 2;
computeHistogram <<< nBlocks, threadsPerBlock >>>
(d input, input size, d histogram);

" Notes:
= Letting threadsPerBlock = 256 makes things much easier in our case

= Letting nBlocks = (number of multiprocessors [SMs] on the device) * 2
is a good rule of thumb, YMMV

= On current hardware (Kepler) — ~ 16384 threads

G. Zachmann Massively Parallel Algorithms SS May 2014 Fundamental Algos & Introduction to CUDA

f.
AT R

]

119

eeeee

" The kernel on the device side:

__global wvoid

computeHistogram(unsigned char * input,
long int input size,
unsigned int histogram[256])

int 1 = threadIdx.x + blockIdx.x * blockDim.x;
int stride = blockDim.x * gridDim.x;
while (i1 < input size)

{

histogram[input[i]] += 1;
1 += stride;

" Problem: race condition!!

G. Zachmann Massively Parallel Algorithms SS May 2014 Fundamental Algos & Introduction to CUDA

120

Y

Solution: Atomic Operations

" The kernel with atomic add:

__global wvoid

computeHistogram(unsigned char * input,
long int input size,
unsigned int histogram[256])

int i = threadldx.x + blockIdx.x * blockDim.x;
int stride = blockDim.x * gridDim.x;
while (i < input size)

{

atomicAdd(& histogram[input[i]], 1);
i += stride;

= Prototype of atomicAdd():
T atomicAdd(T * address, T val)

where T can be int, float (and afew other types)

G. Zachmann Massively Parallel Algorithms SS May 2014 Fundamental Algos & Introduction to CUDA

)
ool

$ F
afi3:

121

eeeee

)
ool

o B
e &

= Semantics: while atomicAdd performs its operation on address, no

other thread can access this memory location! (neither read, nor
write)

= Problem: this algorithm is much slower than the sequential one! &,
= Lesson: always measure performance against CPU!
= Cause: congestion

= |ots of threads waiting for a few
memory locations to become available

G. Zachmann Massively Parallel Algorithms SS May 2014 Fundamental Algos & Introduction to CUDA 122

eeeee

= Remedy: partial histograms in shared memory

computeHistogram(unsigned char * input,
long int input size,
unsigned int histogram[256])

__shared unsigned int partial histo[256];

partial histo[threadIdx.x]
__syncthreads() ;

0,

int i = threadIdx.x + blockIdx.x * blockDim.x;
int stride = blockDim.x * gridDim.x;
while (i < input size) {
atomicAdd(& partial histo[input[i]], 1);
i += stride;

}
syncthreads () ;

gzbmicAdd(& histogram[threadIdx.x],
partial histo[threadIdx.x]);
}

= Note: now it's obvious why we chose 256 threads/block

G. Zachmann Massively Parallel Algorithms SS May 2014 Fundamental Algos & Introduction to CUDA

123

eeeee

W More Atomic Operations

= All programming languages / libraries / environments providing
for some kind of parallelism/concurrency have one or more of
the following atomic operations:

"= int atomicExch(int* address, int wval):
Read old value at address, store val in address, return old value

= Atomic AND: performs the following in one atomic operation

int atomicAnd(int* address, int wval)

{

int old = *address;
*address = old & val;
return old;

}

= Atomic Minimum operation (just analogous to AND)

= Atomic compare-and-swap (CAS), and several more ...

G. Zachmann Massively Parallel Algorithms SS May 2014 Fundamental Algos & Introduction to CUDA

L

3

124

eeeee

" The fundamental atomic operation Compare-And-Swap:

= In CUDA: int atomicCAS (int* address, int compare, int val)

= Performs this little algorithm atomically:

atomic compare and swap(address, compare, new val):

old «— value in memory location address
if compare == old:

store new val — memory location address
return old

= Theorem (w/o proof):
All other atomic operations can be implemented using atomic
compare-and-swap.

G. Zachmann Massively Parallel Algorithms SS May 2014 Fundamental Algos & Introduction to CUDA

f.
AT R

]

125

eeeee

Optional

= Example:

atomic add(address, incr):

current val := value in memory location address
repeat

new val := current val + incr

assumed val := current val

current val := compare and swap(address,

assumed val,
new val)
until assumed_val = current_val

G. Zachmann Massively Parallel Algorithms SS May 2014 Fundamental Algos & Introduction to CUDA

126

Gabriel Zachmann
Optional

eeeee

G. Zachmann Massively Parallel Algorithms SS May 2014 Fundamental Algos & Introduction to CUDA 127

eeeeee

W Advanced GPU & Bus Utilization ‘J

" Problem with performance, if lots of transfer between GPU«—CPU:

—

i iy i

Only uses one transfer direction, Bus idle Only uses one
GPU is idle transfer direction,
GPU is idle

G. Zachmann Massively Parallel Algorithms SS May 2014 Fundamental Algos & Introduction to CUDA 128

P

= Solution: pipelining (the "other" parallelism paradigm)

= |s called

"device

overlap"
in CUDA parlance

= Requires two CUDA techniques
called "streams" and "asychronous

memcpy"

G. Zachmann Massively Parallel Algorithms SS May 2014 Fundamental Algos & Introduction to CUDA 129

eeeeee

For More Information on CUDA ...

" CUDA C Programming Guide (zur Programmiersprache)
= CUDA C Best Practices Guide (zur Performance-Steigerung)

= /Developer/NVIDIA/CUDA-5.0/doc/html/index.html|
(zum Runtime API)

G. Zachmann Massively Parallel Algorithms SS May 2014 Fundamental Algos & Introduction to CUDA 130

Bremen

= Dynamic parallelism (threads can launch
new threads)

= Good for irregular data parallelism (e.g., tree
traversal, multi-grids)

= Running several tasks at the same time on
a GPU (via MPI; they call it "Hyper-Q")

= See:

= "Introduction to CUDA 5.0" on the course

web page

= "CUDA C Programming Guide" at
docs.nvidia.com/cuda/index.html

G. Zachmann Massively Parallel Algorithms SS May 2014

W Concepts we Have Not Covered Here

m | .
B
E—mumumummn (0 (0 (i {0 (i
—
m
il
] 0@ [0
m

Dynamic Parallelism
Makes GPU Computing Easier & Broadens Reach

Just right

CPU Cores Simultaneously Run Tasks on Kepler

FERMI KEPLER
1 MPI Task at a Time 32 Simultaneous MPI Tasks

Fundamental Algos & Introduction to CUDA 131

eeeeee

Graphics Interoperability:

= Transfer images directly from CUDA memory to OpenGL's framebuffer
Dynamic shared memory
Asynchronous memory copies between host « device

Dynamic memory allocation in the kernel

= Can have serious performance issues

Pinned CPU memory (

CUDA Streams

Multi-GPU programming, GPU-to-GPU memory transfer
Zero-copy data transfer

Libraries: CUBLAS, Thrust, ...

Voting functions (__all(), __any())

G. Zachmann Massively Parallel Algorithms SS May 2014 Fundamental Algos & Introduction to CUDA

134

eeeee

= With Graphics Interoperability, you can render results from CUDA
directly in a 3D scene, e.g. by using them as textures

G. Zachmann Massively Parallel Algorithms SS May 2014 Fundamental Algos & Introduction to CUDA

<N
60

135

b

Bremen

Y

G. Zachmann

Massively Parallel Algorithms

SS

May 2014

Fundamental Algos & Introduction to CUDA

.

VR

136

